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1.0 INTRODUCTION

The SEADYN computer program came into existence in 1974 as an
extension of efforts to model underwater electronic structures at the
Electronic Systems Division of the General Electric Company. The major
features of the program were developed as part of the author's doctoral
studies at Cornell University [11. In 1975 the Naval Civil Engineering
Laboratory (NCEL) began evaluating SEADYN and the Chesapeake Division of
the Naval Facilities Engineering Command funded extensions to include
moored vessel options. The output of that funding was the SEADYN/DSSK
program and associated documentation (2-5]. Since 1977 the Naval Facilities
Engineering Command through NCEL has provided continuous development and
experimental verification of the program. This activity has led to
extensive modifications of the program and the addition of new capabilities.
These include:

1. A major reorganization of the program structure and the
adoption of a free-field input format.

2. The addition ' line payout/reel-in capabilities.

3. The addition of the strumming model of Skop, Griffin and Ramberg [6].

4. The development of the viscous relaxation solution for static
analyses [7).

5. The addition of the bottom-limited catenary element.

6. The addition of material internal damping models.

7. The addition of the time sequenced static solutions option.

8. The development of a plotting post-processor [8].

9. The addition of a body impact model (developed for U. S. Coast
Guard R&D Center).

The extent of these developments has prompted the production of a
new set of documentation. Three volumes have been written: the present
volume, a user's manual [91, and a progranner's reference manual [101.
The purpose of this manual is to summarize assumptions, equations, and
numerical solution methods used in SEADYN.



F'inite element techniques based on the stiffness method are employed
in SEADYN. The hallmark of stiffness methods is the versatility of
structural form allowed. Quite complicated structural arrangements,
loads and boundary conditions are permitted. Unlike many special purpose
cable programs, SEADYN makes no restriction on connection topology or
geometric form. Multiple connected redundant systems and networks are
modeled as readily as single line spans. Since the basic element is a
straight line segment, SEADYN can he used to model truss structures as
well as cable systems.

Specific physical charactcristics which are important in cab'e and
mooring systems lead to nonlinearities in the equations. Some of them
a re:

Geometric Nonlinearity - The system stiffness depends on preloading
.and the deflections of the system.

Postion Dependent Loading - Loads delivered to the system depend on
the position and orientation of the system and they change as the system
moves. This is typical of fluid induced loadings for drag and inertia
loads (added mass).

Nonlinear Loading - Loads which depend not only on position, but
are a nonlinear function of the system state variables, e.g., fluid drag
loads depend on the square of the relative velocity and Reynolds' number.

lPostion Dependeut Constraints - The system must remain within
specified( constraints, e.g., surface and bottom limits.

Nonlinear Materials - The load/strain relationship is dependent on
the amount of strain.

PI ysical Chanxes iii the Structure - The structure itself may be
modified with time; snagging a body or paying out lines are in this
category.

Each of these phenomena are treated by SEADYN. This manual outlines
how this is done.
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2.0 IBASIC MODELING ASSUMPTIONS

The approach taken in the SEADYN computer program to model cable
and mooring systems can be described as a discrete element approach. It
can be considered as a combination of the finite element method and the
lunped parameter method in which lines are modeled by the finite element
method with bodies being lumped at the node points.

lin its classical form, the finite element method seeks to represent
conitinuous physical systems with a set of discrete or finite elements
which are formulated by assuming the character of the element response
in terms of a set of interpolating functions. In its usual form it is
equivalent to a Galerkin form of the method of weighted residuals where
the weighting functions are defined individually on each element.
Viewed from another perspective, the finite element method is a form of
the Rayleigh-Ritz method in which the trial functions are defined only
on inl:dividual subregions (elements) of the system. The basic equations
for cables, mooring lines and hawsers are obtained using a simple finite
element in the form of a straight line. The element is assumed to be
straight both before and after deformation of the system, but no restriction
is placed on the amount of stretch and/or rotation the element is subjected
to. It is further assumed that bending and torsional effects are negligible.
In the case of bending this means that the bending stiffness of the
cable has negligible influence on the global response of the system.
Neglect of the torsional effects does not mean that twist is unimportant.
It simply means that coupling between twist and extension is assumed to
have little effect on the overall shape and response of the system. An
obvious situation where this is an invalid assumption is in low tension
condit ions where d twist instability may result in kinking or hockling.
Ini addition to the straight line element, a catenary model is provided
',,r bOttUm interaction. This element neglects fluid loads and roughly

.,ppz,1Ximatee mass redistribution with the bottom interaction.

The only deformable components in the system are assumed to be the
c.,ble elements. The material is assumed to be hyperelastic, i.e., non-
linea•r, time-independent with loading and unloading curves coincident.
1he frequency domain allows proportional damping effects while the tran-
Sient dynamic model allows various forms of material damping.

Any component of the system which cannot be modeled as an individual
line element or a set of line elements is assumed to be a rigid body.
These rigid components are assumed to be lumped at a single point in the
system. They may be assumed to have only a point effect or to act as a
rigid connector for arbitrarily placed lines (e.g., a ship).

The system may be totally immersed in a fluid, suspended between two

tfluids (e.g., water and air) or fluid effects may be ignored. The treat-
ment of fluid effects makes the fundamental assumption that the fluid and
structure problems are uncoupled. This means that except for specific
localized effects the overall fluid field characteristics are unaltered by
the presence of the structure. Thus, such things as flow alteration due
to structural movement and blockage effects are not dealt with. More
specifics on the assumptions and limitations of the fluid interaction
with the structural system are discussed in Section 3.5 and Reference 1.3east Availlable COPY3



The iLagrangian approach is taken in describing the motion of the
system. In this approach all physical variables are expressed in terms
of their values at an intitial reference state. It is possible to
chainge the reference state by employing generalized coordinate transform-
ations which account for distortions and rotations. Analytical procedures
which begin from a reference state and never change that reference are
C.illed total Lagrangian. Updated Lagrangian is an obvious title for
methods which periodically move or update the reference state. Either
procedure can be used and the results obtained should be equivalent. In
the developments which follow the configuration of a system (or an
element) isRdesignated by the capital letter C and a pfe-superscript.
The symbol C means the reference configuration while C means the
totiiguration at some time, t. The definition of quantities like stress,
!;train and displacement usually involve two configurations. A pre-sutscript
is used to denote tht reference configuration for such cases. Thus, C
means a quantity in C measured relative to 0C. 0

Details of the finite element method applicable to cable systems
are given in Reference 1. Only brief summaries of the results pertinent
to the SEADYN program are given here.

4



3.0 SUMMARY OF GOVERNING EQUATIONS

3.1 Global Equation Forms

The general form of the equations of motion for an element can be
written

t [M] t1q) = t(f) - t(g) = tfR) 3-1R R

where

t IM) is the element mass matrix
R

t If) represents the external nodal forces in t c

t (g) represents the nodal reactions in t c

t(R) is called the force residual

An incremental form of the motion equations can be written

t IM) JAq) JM) - t [K I [,&q) - tic) (Q 3-2
R R T R

where

JAq) t+At (q) - t(q) 3-3
R R

and

t JK J is called the tangent stiffness matrix
R T

t [C] is an incremental damping matrix
R

In many situations (e.g., fluid loading) the force is dependent on
the deflection. In this case

At +(Af) (Aq) 3-4
t t (q)

R

+ t [K -[Aq)
R R]
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The incremental motion equations are then written

[M] {aq) + L [C)IA;+ 'IT 14q) =(Alf) 3-

where

T = [ t 3-6

Equation (3-2) or (3-6) can be used to model small displacement
response about a steady deformed configuration, or it can be used in
nonlinear dynamics by recalculating the stiffness matrix at each step.
It should be noted that both equations neglect the position dependent
effects in the mass matrix. The incremental load rotation matrix, [ 1R],
is nonsymmetric and causes some problems in applying Equation (3-6).
Its effect when small increments are used is felt to be minimal and is
ignored in SEADYN. The incremental damping matrix may be difficult to
Dbtain in the more general situations. A siplified treatment is discussed
in Section 3.3.

An alternative form of the incremental equations is obtained from
Equation (3-1) by expanding only the internal loads in a Taylor series
and neglecting higher order terms. The result is

t+AttItt t tAttR+A [M *A q) + t [KT.J f~q) = (tf) - tfg)

This equation is linearized by approximating t+tAtIf) and t+AtR(M)
vith their values at t+At while remaining io the orifpltion defined by

C. Any damping effects are assumed to included in Mff.

The contributions from each of the elements in the system (cables,
lumped bodies, and rigid bodies) can be combined in a very simple and
direct manner once they have been generated and transformed to the
global coordinate system. This is done element by element by accumlating
the element contributions in the appropriate position of the global
arrays. An ordering of the degrees of freedom is implied in this procedure.
The order assumed in SEADYN is simply the three displacement components
(x,y,z) stored in the order of the node number. Thus, the global nodal
displacement vector assumes the x component of node number one is first,
the y component of node 2 is fourth, etc. By requiring slave (movement
defined in terms of another node) nodes to be numbered after nodes which
have active degrees of freedom, the solution bookkeeping is greatly
simplified.

The assembled global equations have essentially the same form as
the element motion equations. The main distinction is that the order of
the equations is increased to include all of the active degreeu of
freedom in the system. Noting this, the total nonlinear equations of
motion can be written

6



t R .
Rieti {~qt ffj - t(gj (i 3-8

The two incremental forms are

tt[NJ{le1 + t. ] {4) + Irl {/&lJ = {(d1 3-9

Rt+AtIM]tA q + t JIKI JAcj - 'if) - t(g) -1

It should be emphasized that these represent the assembled equations
for the system and that it is assumed that the constraints implied by
the boundary conditions and slave/master conditions are accounted for.
The dynamic equations reduce to the static equations when the time
dependent terms are dropped. Thus, the nonlinear static equation is

tIR} = 0 3-11

and the incremental static equations are

i[TJ] {Aq} = {h?} 3-12RT

t+At t
R[KTJ {Aq) = t+AtIf) - (g) 3-13

In the static case the parameter t is used to signify a load step rather
than a time step. The static equations presume a stable physical system
has been described by imposing adequate constraints on the system. If
this is not so, the stiffness matrices are singular and there is not a
unique configuration of the system which will satisfy the equation. In
case. of nonlinear systems (particularly those with surface ships and
mooring buoys) the static global equations may be ill-conditioned. This
means they are nearly singular and numerical errors in the solution pro-
cedure may lead to apparent singularities. This will be given more
attention in Section 4.2.

The classical approach for analyzing wave induced motions of plat-
forms and vessels is to transform the incremental equations into the
frequency domain and use linear superposition techniques. The linearized
small displacement equation form used is that of Equation (3-9). The
transforming assumption is that

R I~'t 3-14

Assuming quasi-linearity of Equation (3-9), the steady state response
has the form

(Aq) = Re (Qce wt) 315



Sub:,tituting (3-14) and (3-15) into (3-9) yields

Ri2 t, iW ic1 + L JKJ M IF) 3-16

Solution of this set of complex simultaneous linear equations
allows the computation of Lhe response amplitudes and phase angles for
all degrees of freedom in the system. The magnitude of the response in
each degree of freedom is given by'U Q Q~ 3-17

th
where Qi is the complex conjugate of the i component of {Q}. The
ph;-se angle between the incident loading (wave) and the response is
gi en by

- m (Q) d

= tan R (Q) 3-18

A phase angle of zero corresponds to the response being in phase with
the incident loading.

c.2 Eq•uatios for Line Elements

Two line element models are av:Iilable. The first is the one-dimen-
sional simplex element. This is a straight elemený, using two nodes.
The second element also uses two nodes in its definition and is inthe
torn of a catenary.

3.2.1 The One Dimensional Simlhex Element

A tinite element which has the form of a line (i.e., one-dimensional)
and uises only the field parameters at the two ends of the line in the
interpolating function is referred to as a one-dimensional simplex
element fill. When the element is a straight Pine in 3D space and the
field parameters are the nodal (end point) displa(ements the element is
called a truss element in struct.viral terminology.

Consider a single straight element which is defined by the position
of two nodes (one at each end). Seiect a local coordinate system with
the x axis extending from the first node to the second. The other two
axes may b, chosen arbitrarily unr'er the restriction that they form a
right hanoed cartesian reference frame. When the element is in its
unloaded state it has a length OL. Assume the material constitutive
relation has the form

tS= tE tr 3-190 0 0 :

f



where

S is the 2nd Piola-Kirchhoff stress in C
0

t is the Green's strain in tc
0

tE is a nonlinear material modulus which may be a function of strain.
0

The incremental form of t s constitutive relation can be written for a
small strain increment, A6

t+At t t
O+ss = ts tE At 3-20o 0 0oT 0

where •ET is the tangent modulus evaluated at t

Making the finite element assumption that the displacement at any
position along the element 4s a linear function of the displacements of
the nodes one can write

= ( 1I RL 13 3-21

v2
w2

- RINI {qN

whe re

iu} represents the components of the displacement from R C

Sq} represents the components of the nodal displacements

(RNI is called a shape function matrix

I is the identity matrix of order 3
3

The symbolic expression for the large jisplacement kinematic relations(Green's Strain) for a movement from C to •C can be written [11]

t t DItu) 3-22

9



Substitution from Equation (3-21) yields

t I) RDI IN IN ILjqj I= I t{q} 3-23

The mass matrix for the straight element can be written in two forms:

Consistent Mass Matrix

IMI p A L 3-24
32 13 13

Lumped Mass Matrix

RRARL 13

IM] pAL I 3-25
2 0 13J

where Rp is the element material density in RC, and C, and Ris the

element cross-sectional area in C. With the assumption of conversion
of mass, the element mass matrix does not change with deformation. The
pre-sub and superscripts are used in Equation (3-1) since this is not
true of fluid added mass.

The consistent mass matrix is obtained from the kinetic energy and
Equation (3-21). The lumped form can be obtained by the intuitive pro-
cess of lumping half of the element mass at each node or by summing all
the terms on each row of the consistent mass matrix and assigning the
sum to the diagonal position.

The external forces may be due to point or distributed loads.
Point loads appear as specific entries in the global equations. Distributed
loads are usually from gravity effects and/or fluid loading. Fluid
loading effects are discussed in Section 3.5. The general form of the
gravity loading is

RL
tIf} = J RIN]T RIT) dx 3-26

0

where

RTI} represents the components of the element specific weight

(in fluid) relative to the local coordinate system

RINJT is the transpose of R[N)

10



Substitution from Equation (3-21) into Equation (3-26) and noting
the orientation of the element with respect to the direction of gravity
leads to the conclusion that these forces are equivalent to placing one
half of the element weight acting in the gravity direction at each node.
It should be noted that Equation (3-26) assumes mass is conserved.

The internal forces of Equation (3-1) can be written (1l

t t R tL-X
1g) RS A _{-R 1 3-27

L

where WA} is a unit vector in the direction of the deformed element.
The stress term, S, can be written

tp RL

RA tL

where tP is the element load in the deformed state. This allows the
force residual to be written

t{R) = {f) - p {-] 3-29

The stiffness matrix can be obtaincd from consideration of the second
variation of the strain energy in C. The result is [I]

KT : + 0+ 2 3-30- ] k kI k 1 -k2 k2
R o

-kG 
k

where

[k j oT O00

1kl] o TiL7 RiL ~ i
0L 02 0

0 T0E (O*) 2[20
ki L L 0~ 0

3ii
112



t E 0 1 011

k21 0T (2) 2

IA:Jl

L •4

OL
0 3 1 631

[kI tp 1 O0

G tL 0 1
01 

1 0 "
1 

1t t
RU2 - R ulI

t t
Rv2 - RVI

2= R2 R

t t - t W
Rw2 Rl 1•

3 R

3.2.2 The Bottom Limited Catenary Element

Quite often a mooring system will employ a line which must interact
with the bottom as the moored body moves, The major feature of such a
line is that significant lengths of line are lifted or laid down on the
bottom when relatively small movements are induced at the upper end of
the line. This is particularly true of shallow water moors. As an aid
in modeling such lines SEADYN provides a bottom-limited catenary element.

The element uses the classical catenary relations with a modifica-
tion to account for length changes due to line stretch. The nature of
the catenary equations is such that it is not possible to solve explicitly
for stiffness terms. A perturbation procedure presented by Peyrot and
Goulois 112] is used to circumvent this problem. The SEADYN implementa-
tion follows the developments of Reference 12 with two exceptions. The
first is that the tangential stiffness matrix produced by the perturbation
procedure was recognizea to be deficient since it did not recognize the
geometric stiffness resisting out of plane motion. This leficiency was
removed by adding a factor to the diagonal of the tanger.t stiffness
matrix at the degree of freedom corresponding the out-of-plane displacement
of each node. The factor added is the horizontal component of the
catenary tension divided by the horizontal distance between the nodes.

The second modification consists of the imposition of a bottom
limit on the catenary. The limit is assumed to be a horizontal plane
passing through the lowest node on the catenary. The approach taken to
enforce this limit is an iterative process similar to the one proposed
by Peyrot 113]. .

12



The actual equations used are those of Reference 12 and will not be
repeated here. The procedure relys oit an algorithm which computes the
nodal forces on a sagged line when the unstretched length, nodal positions
and the distributed loading given. The tangent stiffness matrix is
obtained from the changes in nodal loads produced by perturbing the
nodal positions. Only cable weight loading is treated. Fluid drag
loads are ignored on this element.

The bottom-limited catenary element uses a local coordinate system
which has its origin at the bottom node. The local x axis is horizontal
in the vertical plane containing the two element nodes. The pesitive x
direction is toward the upper node. The local y axis is vertical upward.

The z axis is chosen to form a right-handed cartesian system. Element
stiffness and contributions to the residual are first computed in the
local coordinate system and then transformed to the giobal system. The
transformation procedures are those discussed in Section 3.9.

3.3 Material Models, Elasticity

The line material, is assumed to be nonlinear elastic in form. Two
functional forms are assumed which relate the line tension to the exten-
sional strain. The first is a tabular form which represents a sequence
of linear segments describing the relation. The second is a two parameter
curve fit form. It has been found effective in modeling cable
constructions [131. The form is

t = a b 3-31tp - a

where 3 and b are curve fitting parameters. Note that this relation is
assi-ne-i to be between the total tension and the total uniaxial Green's
strain. Ttfe relation between the customary uniaxial engineering strain
and uniaxial Green's strain is

"- (1 + 1 3-32
2 engineering engineering

The diile~ence between these two strain measures is minor up to strains
Az an engineering strain of 20% the Green's strain is only 22%.

The material constitutive relations are used in two situations in
SEAVN. The first occasion arises in the case where an initial equili-
br.L.,. ci,.figuration is known (or guessed). In this case it is desired
to fAid the unstrained length and the strain with the load and position
of the nodes given.

(ta the other case, the unstretched lvcgth is knnwn, the nodal posi-
Lio.,: are given and it is desired to co'lp.. the strainks and the tangent
moduuI tis, Et A. This situation occur-s ---.,h time a new estimate of the
state of he system is made.

13



In either case, it is necessary to use the expression for uniaxial
Green's strain

o (t) ] 3-33

This form is used rather than accumulating strain increments to avoid
numerical round-off errors. The *L for each element is either given or
computed for each element at the beginning of the analysis. The L is
recomputed at each stage of the solution process where the strain is
needed. ThE computation of these two lengths can be a source of numerical
noise when L - 'L and low precision is carried in the computer. Two
situattons aggravate the problem: (1) the material is very stiff, i.e.,
large Et, (2) the loading is small.

3.4 DampingModels

Damping enters the SEADYN analyses in various ways. First, there
is a certain amount of damping inherent or intentionally included in the
numerical algorithms for calculating transient res,, nse. Such algorithmic
damping is treated in Section 5.2. Another form of numerical damping is
involved in the nonlinear static solutions. This is an artifice to aid
in obtaining convergent static solutions to highly nenli iear problems.
Discussion of numerical damping can be found in Section 5.1. A third
form of damping is due to the dissipative effects of the fluid interacting
with the structure as discussed in Section 3.5.

This section is concerned with material or physical damping models
for the dynamic response of the structure. Material damping is considered
to be an inherent characteristic of the line material and is distributed
throughout the line. It is appropriately treated in the material consti-
tutive relation. The result is that the material takes a viscoelastic
form. An alternative formulation presumes not enough information is
available to define all features and sources of dissipation and the
Sbehavior is approximated Lhrough an estimated damping matrix. The form
asstumed is

R 1c] = Ro im) + OR IKI 3-34

The treatment of material damping tollows a component approach.
Two components are used as building blocks: the elastic component which

relates forces to displacements and the dashpot which relates forces to
velocities.

These components may be used in two arrangements in SEADYN. These
artre referred to as the Kelvin and the NOAA-Reid models (251. They are
represented in Figure 3-1.

14
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a) Kelvin Model b) NOAA-Reid

Figure 3-1. Material Models

The force constitutive relations are given by:

Kelvin Model

F K 6K

T N6
N

lHence 3-35

T K 6+ N

NOAA-Reid Model

N N

T :T + T' ;6:5 + 5
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These relations can be writmten in terms of strains using the substitutions

K6 = EA&

CA =CAr

Then

Kelvin Model

T'= EA + C A 3-37

NOAA - Reid Model

CA CA
T EA e + . (EA° + EA1 ) i - 3-38

Equation (3-37) has been implemented in SEADYN by recognizing the
EA term as Lhe one discussed in Section 3.3. The CA term is taken as
an additional input parameter.

The more complicated form of equation (3-38) presents more problems
since it involves a tension rate term as well as a strairt rate term. As
with the Kelvin model, the EA term is identified as the basic mate -ial
elasticity relation and the CR, and EAI parameters are provided as ýiddi-
tional input. The tension rate is approximated by a backward diffiernce
in time. As a result it lags the other parameters. This approximation
is conisidered to be a reasonable compromise.

These material damping models have only been implemented in SEADYN
on the direct iterative (DI) method for transient dynamics (see Section 5.2).
This solution works directly with the global equations in the form of
Equation (3-8) and no global stiffness or daraping matrix is used. The
D)I method makes the use of proportional damping a little less direct.
In The case of proportional damping in transienu •:.,namics using the DI
mnthod it is assumed that for each element

t [O ,2 t 0 t •.N = (t m *1, + EA) i 3-39

0 8 0

where h is the material secant modulus.
0 6

The frequency domain solutions treat damping by forming an incremental
damping matrix corresponding to the form of Equation (3-16). The material
damping forms have not been implemented, but the proportional damping in
the form of Equation (3-34) has. In addition, the dissipative terms
from drag loading have been approximated using the approach presented in
Appendix 1.
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Neither material nor proportional damping is used in any transient I
dynamic option besides the Dl method. No damping is used in the natural
frequency calculations.

3.5 Fluid Loads

The primary assumption regarding the effect of fluid immersion on
the cable system as stated in Section 2 is that the fluid and structural
problems are uncoupled. /he independence principle [141 is assumed in
the treatment of fluid loading on the cables, In brief, the independence
principle asserts that the fluid loading can be treated as resulting
from two separate flows: one normal and one tangential to the cable.

The fluid induced loads can be separated into a part involving the
relative velocity between the cable and the fluid and a part involving
the relative acceleration. The velocity related terms can be written

{w = W Nq} + WT (R) 3-40

wile re

wN 1/2 Pf CN D VN2 3-41

w . - 1/2 Ptf C.T1 1) VT 3-42

{q}, 1A) are unit vectors in the directions of the normal
and tangential components of the relative velocity

C(N' CT are normal and tangential drag coefficients

D is the drag diameter of the cable

1)f is the density of the fluid

V , VT are no10rmaal and tangential relative Velocities

The t lid loading vector for an element is then

tL

Itf f [lNJ" {w} dl.

Assuming a linear variation of 1w) over the length of the element

ti- 13 131 (w I3

117[2 1()2



The acceleration related portion of the fluid loading can be separated
into a part due to flow field acceleration and a part due t.o structural
acceleration. The flow field acceleration part is neglected in the
cable loading and the structural acceleration part is treated as an
added mass. The added mass matrix for a straight element can be writtenR, R00

[N~ ~ Ad d Cpf L KI ](M 0f 3-45
[ added ]= 2 1 .-

where

CM is an added mass coefficient.

It should be noted that there is no added mass tangential to the cable
which makes this a position dependent term.

In some of the solution procedures economies can be achieved if the
mass matrix is diagonal. A lumped form of the combined cable and fluid
added mass matrix can be written:

-R RC~pfR R [I
2 [1001___A-1

R A LCM fA . r

M2 [16 2 L 3-46 A

1M i 1o + IM L]

where

S Rp + C 3-47
P PtC Pf

This form still presents some difficulties which will be dealt with in
the discussion of the solution procederes,

Fluid loads on submerged lumped bodies are estimated using an
approach similar to thatw used for the cable element.. Two forms for
lumped bodies are considered: spherical and an end-faired cylinder.
The drag loading on a sphere is given by

tjf 1 2 t.
ifsphere 1/2 pf C D V tkAI 3-48

where

1) is the diameter of the sphere

C is the drag coefficient

Iis
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V is the relative velocity between the fluid and the point.

where the sphere i.s Iocat..d,

J lA} is a unit vector in the direction of relative velocity.

The added mass for a sphere is

I- •CH l:f it P3  34CEl 1)fn1
Sadded] 6 1131 3-49 ,A

The end faired cylinder loading and added mass is assumed to Lave
the same form as that for a cable element except that. the total effect.

U is placed at a single point rather than being distributed between two

There are specific fluid effects pecultar to surface buoys and ships
which are discussed in Sections 3.7 and 3.8.A

3.6 fui ed Bod i e s

Two forms of lumped bodies are considered. The simplest form
treats the body as a single point with three displacemeutit degrees of
freedom. The point is assumed to have mass but no rotational. inertia.
No elasticity effects are attributed to the body*, but it may be a means
of inducing fluiid loads ito the system (set Sec't(ion 3.5). If the mass
of thc body is iu, then the mass matrix is simply

• 1me m I3-50

Th i s body at tects only one' node in the system'.

The second form i s that of a rigid body with spatial dimensions.
'uThe mas,. is still assumed to br: con:centrated at. a single point but that
point.t has vSix degrees of freedom. The mass matrix assunmed for this case

p•i has specific forms only in the case of mooring buoys and surface ships.
The p Tograin generates the mass matrix for i' ooring buoys and assumes the
mas; mat r ix is de fi ned by input, from the ship's motion file for surfacec
ships See Sect i o ns 3. 7 and 3.8 for details. In either case the mass
""lsatrix is a 6 x 0 matrix.

-1.7 Suirface Shil's and Platforms

The rigid body element is used to model ships and platforms (the

term ship will be used to mean either one). A single node point is used
to detine the posit.ion of the ship. Since the node must express the
angular as well as spatial position of the ship it is required to have 4
:;x degrees of freedom. (The SEADYN program ase.s two consecutive nodes
of three degrees of freedom each to define a ship.) Att-achments of
mooring Iilies and/or working I ines are handled through the slave/master
t ra nts fo rma t i on.
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In static analyses the steady state effects of winds and surface
currents acting on the ship are treated as lateral and longitudinal
forces and a yaw moment which are assumed to act at the ship's reference
point. The values of these forces depend on the flow velocities and the
angle between the ship's heading and the flow direction. Empirical load
tables giving load coefficients versus heading or analytical load functions
may be used. The empirical approach is given in NAVFAC DH-26 [151 and
both approaches are summarized in ile appendices of the user's manual.

The dynamic equations for the response of surface ships to waves
are usually given in an incremental linearized form. These equations
have the form

t IS + MAS] {uS} + c {Is} + {[Ks Ius) = 3-51

where

{us} represents the six components of ship's motion
(surge, sway, heave, roll, pitch, yaw)

tt[HsI is the ships mass matrix including rotational inertial terms

it [MS Iis the added mass due to fluid acceleration effects
t ASJ
tt[Cs I is an equivalent linerarized damping matrix
tcs'
L[K is the ship's hydrostatic restoring matrix
t[S

Ifs I are the point equivalent forces representing the wave
induced exciting forces

lrk order to obtain this linearization it is usually assumed that
the ship is driven by a simple harmonic wave. With this assumption, the
forces, added mass and damping are frequency and heading dependent. In
addition, the linearization of the roll damping term makes it dependent
on the magnitude of the roll angle. Equations of the form of (3-51) can
be obtained for slender bodies using strip theory 1161. A more general
theory is required for other forms 1171. The SEADYN program assumes the
values for these coefficients are provided through a data file. The
format of that data file is described in Appendix A of the User's
Manual and Section 5.3 of the Programmer's Reference Manual.

The element equation represented by Equation (3-51) can be manipulated
ds any other element equation and combined with the global equations of
the system. No new concepts are involved in these operations.

3.8 Mooring Buoys

Ship's moors often involve surface buoys which support the mooring
line and are connected to the ship through a hawser. This type of buoy
usually remains on the surface where it is subjected to the effects of

20



/

winds, currents and waves. The general form of the buoy motion equations
linearized to represent small excursions from a static reference state
can be written:

t •SB 1 "USB} + t[SB] {'SB} ÷ t(KsB] USB) = fSB| 3-52

where the various terms follow the previously established pattern. The
forcing term represented by If ) deals only with wave excitation.
Static load effects on a moori~1 buoy follow the same form as described
previously in Section 3.6.

In order to avoid a gruat deal of complexity, it is assumed that
the buoy is spherical in shape and that a local cartesian coordinate
system id selected which is vertical in the z direction and has the
incident wave traveling in the +x direction. No loss of generality is
incurred with this choice of coordinate system on a spherical buoy since
the character of the coefficients do not depend on the orientation or
attitude of the buoy. The problem is further simplified if it is assumed
that the buoy is homogeneous with the center of gravity at the geometric
center of the buoy and that the geometric center is located at the water
line in the reference state.

Attachments of hawser and mooring lines to the buoy can be readily
handled if their positions relative to the local coordinate system are
known. The rigid link transformation described in Section 3.11 is used
for this purpose. The positions of the attachments can be found from
the static solution.

Since it is assumed that the equations use tC as the reference con-
figuration, the configuration notation will be dropped for this discussion.

Transformation from the local to the global system for assembly of
the buoy equations with the rest of the moor system equations is a
straightforward process which follows the method outlined previously.
For this reason only the coefficients in the local coordinate system
will be given here. It should be kept in mind that the following equations
represent the incremental motion equations for a surface buoy in the
local coordinate system just described.

Given that the buoy has a mass designated by m and a mass moment of
inertia, Jm' the buoy portion of the mass matrix is

B 3 3-530MB = Jm I3

where I is the identity matrix of order 3. The assumption of a homoge-
neous s~here should be recalled at this point. If the attachments
contribute significant mass, their effects can be treated by including
additional lumped masses at those nodes.
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The added mass has the form

A 0 0 0 A 0  0

Ayy 0 AyO 0 0

] Az 0 0 0 :3-54
zz

(Y)A 0 0

A 0
00

L

IMSB+ = 35B] 5 IMA-

The wave damping matrix has a form similar to the added mass matrix.
Specific values for the added mass and damping coefficients for a sphere
were given by Patton 120]. His values were obtained by curve fitting
the analytical result, presentpd by Kim [18]. The nondimensional values
ott.ained were

11-1 1.089 * 0.052 a for 0 < a < 0.74 3-56

x

- /(-0.0318 4. 0.9,,/: a ) for 0.74 a < 3.4I

H 1.85 for 0 < a < 0.1 3-57z
"-0.256

"1.02 a 0.1 < a < 3,4

N 0 for 0 < a < 0.1 3-58
x

= -,.069 -t 0.715 a fo r 0.1 < a < 1.37

for 1.37 < a < 3.4

N 0.126 + 1.7 a for 0 < a < 0.4 3-59

I . Ie- for 0.4 < a < 3.4

wherre a is the nondimensional irequeincy given by

2_.2ha _ awt 3-60
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and

a = radius of sphere

A = wavelength

w = circular frequency of wave container

These equations for the added mass and damping coefficients for
mooring buoys proved to be cumbersome for programming. A polynomial
curve-fitting of the original curves given by Kim (181 was used in the
program. The polynomial coefficients are given below.

FUNCTION a a a 2  a 3  a4 a a6 a7

M 1.0620 -0.4090 5.3299 -10.0143 7.6387 -2.9089 0.5509 -0.0414
x

M 1.7945 1.3362 -10.9227 18.0521 -13.8920 5.5725 -1.1249 0.0902
z

N 0. -1.5252 7.2144 -8.6447 5.0535 -1.6218 0.2750 -0.0192
x

N 0. 4.3747 -9.8378 10.7232 -6.6657 2.3676 -0.4439 0.0339

The equation form is

7
F ai(a )1 3-61

i=O

3IThe added mass terms are nond mensionalized by the factor pa Id

the damping terms by the factor pa w, thus

[ 3
A = A = pa M 3-62

xx yy x

Az= Oa 3 M2
zz 2

S= C = paw3 N 3-63
Xx yy x

C pa wNzz N2

The roll, pitch and yaw added mass terms arise from fluid viscosity
and they can be written

4n paA A 4 pa 3-64

+ 2pa + 2P a

23

,.



* IJ

whe re

3-65

and v = the kinematic viscosity of the fTuid, Since the kinematic
viscosity of water is of the order of 10 ft4/sec, the rotational added
mass ter•ms will be small compared to the buoy inertia terms. Damping
due to rotational motion is very small and wi.ll be neglected. Thus,

C C0o =C 0 3-66

When the center of pressure does not coincide with the center of
gravity of the buoy, a coupling between lateral and rotational motion
exists. These terms can be written:

A = A (z Zc) 3-67
xe xx cg cp

Ayý : -Ayy (z -z )
yy eg cp

C = C (zg- ) 3-68
X0 xx Cg C)

C -C (z -z)
YO yy cg cp

With the origin of the local coordinate system at the geometric
center (also center of gravity), z is zero. The center of pressure
for a half submerged sphere is obtacned from

fs z rl s f-aZ\2 2~Z
Sz - z dzz - -- = 4 3-69

CP f r x (is 3n -a "S 22, f •a - z dz

0

The damping terms presented above do not represent the effects of
viscotis drag. The viscous terms involve the square of the relative
velocity between the buoy and the fluid and are therefore nonlinear.
The viscous effects are generally of less importance than the wave
damping. Obviously, this is not. the case for the rotational movement
since those terms are zero for ,-.ave damping. In a free-floating buoy
the viscouus rotational terms would play an important part, but in a
mooring system where the hawser and mooring leg restrain the buoy the
rotation is limited. Therefore, all of the viscous terms will be
neglected rather than attempting to linearize them.

The only nonzero hydrostatic restoring force on a half-submerged
spherical buoy acts in the heave direction. Its value for small displace-
ments is

k22 - a 2g 3-70
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When the buoy provides a connection between a mooring line and a hawser
it develops an additional stiffness (resistance to motion) due to the
tensile force being transmitted across it. This is analogous to the
geometric stiffness term, [KI , seen in the cable element stiffness
matrix in Section 3.2.1. This geometric stiffness effect is automatically
taken into account by the rigid link transformation of the elements
representing the attached lines.

The right-hand side of Equation (3-52) represents the forces due to
surface waves. Assuming the wave is harmonic in form, Kim [19) shows
that the wave induced forces can be written

S. S
AA X + C
xx w xC w

If I}A= + 2 + IZ Zw 3-71SBZZ w ZZ W w o

S A a+ C I + 210
ea w ea w 2 w

0

where

S 3M
A = pa 3 xS 3-72

S3 S
C = pa w N 3-73

. a'(ztix) ds fP9 f e rS ds pg cos (a'x) tj ds 3-74

= pgf ea'(Z+ix) (xfz - Zqx) ds 3-75
2 S Z x

For the half submerged sphere

A6 6 12 = 0 3-76

The wave pressure component of the heave exciting force, IV, is
closely approximated by the pressure at the water surface distributed
over the cross section at the water surface. A plot of this function
versus the nondimensignalsfreouency ýs given in Figure 3-1.

The values for M., NM, N and N for a half submerged sphere were
by Kim (Ref 19). A polynomial curve fit of those func•tions plus the
curve for I are summarized in the following table.
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Figure 3-1. Heave exciting force for half-ubmerged sphere.
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SUMMARY OF WAVE EXCITING FORCE COEFFICIENTS

FUNCTI.ON a 0  a a2 a3 a4 a5 a6 a 7

MS 0. 1.7586 -8.2171 12.0253 -8.2882 3.0081 -0.5576 0.0416
x

HS 1.7868 1.0552 -10.5792 17.2729 -13.2596 5.3272 -1.0781 0.0866
z

NS 1.0833 0.0833 -1.4496 0.7753 -0.0705 -0.0314 0.0055 0.
S

NS 0. 4.2382 -8.5367 8.2743 -4.6849 1.5633 -0.2823 0.0211

Il/na 2pg 1.0 -0.0004 -0.1218 -0.0026 0.0069 -0.0007 0. 0.

where the function form is:

N
F = E ai(a')i 3-77

i=O

Thus all of the terms necessary for treating the small displacement
behavior of a restrained, half-submerged spherical buoy are available.
The assumptions employed appear to be reasonable and should lead to a
good approximation of the buoy effects in a deep sea moor. Although
a spherical buoy has been assumed, a comparison of the curves presented
by Kim (Ref 18) for a sphere and those presented by Garrison (Ref 17)
for a half-subinerged cylindrical buoy with an aspect ratio of 1.0 shows
that the added mass and damping coefficients are quite similar. There- h
fore, it is reasonable to expect the sphere equations to give at least
an order-of-magnitude approximation of a cylindrical buoy.

The small displacement assumption deserves some further comment.

For wavelengths of the order of tho, buoy diameter one would expect the
buoy motion to be small. However, as the wavelength increases, the
buoy motions increase. Since most of the wave energy is expected in
the longer wavelengths, the buoy could be expected to see large motions
which would cause these equations to be inaccurate. When no ship is
in the system, this inaccuracy could be serious. Fortunately, the ship
motion becomes a significant effect in the longer wavelengths and the
buoy motion is dominated by the ship movement as transmitted through
the hawser and reacted by the mooring line. In this case the contri-
butions from the buoy itself (though in error) would generally be
insignificant. For the shorter wavelengths, the ship appears nearly
fixed, and the exciting forces due to wave action on the buoy become
important. It is fortuitous that this is the range in which the buoy
equations are most accurate.

3.9 Coordinate S stems and Transformations

Equations for the cable element, as well as ships and mooring
buoys, are most readily developed in a local or intrinsic coordirite
system which is considered to move with the element. The development
of a global set of equations which represents the behavior of the
assembled system of elements requires a single global coordinate system.
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Transformations between the local coordinate system and the global
system in a reference configuration are accomplished by the usual
rotation of coordinates. The general form for the components of a
vector at a point is

tý t(u) 3-78
RiUllocal RT Ra global

Columns of the transformation matrix are the components of a unit vector
in the direction of the local coordinate axis expressed in the global - |
system. Since only right-handed cartesian coordinates are considered,
the inverse transformation is obtained with the transpose of [T). All
contributions from the external and internal loads, etc., mus§ be
transformed to the global system before they are combined with other
components in the system.

It should be noted that these coordinate transformations apply only
to quantities expressed relative to a specific reference configuration.
As long as the reference configuration remains fixed the individual
coordinate transformations kemain pnchanged regardless of how much
deformation occurs between C and C.

Coordinate transformations involving nodal point displacements for
an element can be written

St t
R{qllocal A-- Rl ~global RITI R {qglobal

R T :i

"The form for nodal forces is similar. When one transforms the incremental
notion equations from the local to the global system the equations take
the form

R'I (Aq}glob. l + }global

+RT global Afglobal 3-80

where

t -T t

] - RIT] R(M] IT)

t T t T
[E•l ] = IT]T R cI, I T)

RIK.rI - R[TT R[KT] RITj

{Af}global - R[TT {flocal

28



Thus, it is seen that coordinate rotations do not alter the form of
the equations. Unless specific emphasis is required, no further distinc-
tion between the local and global equation forms will be made. It is
assumed that. the equations are written in a homogeneous system, i.e., all
displacements, forces, stiffnesses, etc., are in the same coordinate system.

3.10 Restraint Transformations

A generalization of the coordinate system transformation is useful
in modeling the effects of displacement restraints. Such restraints
represent boundary conditions where the value of the displacement is
specified. It may be zero or some finite quantity. SEADYN imposes
these restraints in static analyses after the global stiffness matrix
has been assembled. The process amounts to an imposition of a linear
relation of the form:

= .] ) + 3-81U d 0a a d

Here it is assumed the [d] represents known or specified displacement
components.

Consider a partitioned form of the static stifiness equations (the
itidices are dropped for simplicity)

aa ad] 3-82
Kda Kddjud

Applying the linear transformation represented by (3-81) the following
results

JKaa] {Ua} = a taI - [Kadl {d} 3-83

The form of this equation suggests a procedure for imposing restraints
on the global equations. First assume the d-portion has only one component,
then take the column of the stiffness matrix that corresponds to that
degree of freedom, and subtract it times d from the force vector. Next,
set all entries in that row and column of the stiffness matrix to zero.
Finally, replace the entry in the force vector for that row to the value
of d and set the corresponding diagonal element of the stiffness matrix
to unity. This process is repeated for each degree of freedom where a
restraint is to be imposed. This process is valid for any value of d
(including zero). When d represents a large movement it will be necessary
to utilize some nonli.ear solution algorithm to get an equilibrium solu-
tion. These methods .re discussed in Section 5.1.
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3.11 Slave/Master Transformations

The generalized rigid bodies used to model ships and mooring buoys
require some special manipulations to connect them to the rest of the
system. Their motions are assumed to be described by the six degrees of
freedom of a single point. The attachmints, however, will not connect
to the rigid body at that node. Since the body is assumed to be rigid,
it is possible to express the motion of any point on the body in terms
of the motion of a single point and the relative positions on the body.
The node used to model the body is called a master node. Any other ;g
point on the body is called a slave node. Given the six components of
motion at the master node, the translation components of a slave node
can be written:

[1 0 010 ýa. [A1 q)
q 01 0 A7 0 x3.-84L 0 1I Ay - 0 master

or

".Aslave T sMI ,master

.aieere Ax, Ay, Az are components of the distance between the two points
measured from t.he, maýster to the slave, i.e., Ax x = %C, etc.P.. sla "e ^m aj t

The matrix [TsN] can be viewed as a generalized form oy the cooor inate
transformation represented by Equation (3-78) and the transformation
procedures of the previous sections can be employed.

It. should be noted that the slave/master transformation involves an
alteration of the number of degrees of freedom. When an end of a cable
element connects to a slave node, the application of Equation (3-84) in
the transformation indicated by Equation (3-80) results in a stiffness
matrix (etc.) which is 9 x 9 instead of 6 x 6. It should further be
noted that the slave/master transformation form assumes small displace-
ments and is therefore only applicable to the incremental equations.

= X t[x + t1 . (R1x) R{1v) 3-85
slave master R RTslave mast

where RIT) is a rotation watrixtof the form (3-78) which represents the
total angle changes from C to C at the master node.
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4.0 MODEL ING CABILE ANI) mOoIt; Sys'rMs

4.1 General Approach

The SEADYN program utilizes a line element, in such a way that it
can represent truss structures as well as cables and mooring lines. All
of these structures have a common feature in that the basic element is a
one-force member. Modeling a cable span with multiple line segments or
represeiuting a truss structure involves essentially the same steps. Of
course, a segmented model of a curved span represents some special
approximations not needed for trusses and the geometric nonlinearities
must be treated in cable spans while that may not be essential in trusses,
But. once the approximations have been made, the building block, the
element, is one that can be used for either type of structure.

One should be aware that. whenever only two line elements meet at a
node and the other ends of those elements are not totally fixed, the
geometric nonlinearity must be treated. Without preloading and appropriate
external loads, such a system is a mechanisn. The stiffness matrix for a
mechanism is singular.

Although truss structures can be defined that have sufficient
rigidity and structural stability that small deformation assumptions can
give reasonable solutions, small deformation theory cannot be used on
cable spans unless large oreloads are supported and the stiffening
effects of those preloads are included in the equilibrium equations.

In general , the modeling process for cable systems involves the
selection of appropriatLe subdivision of the spans. Since straight lines
are the pre'.ominant elements in SEADYN, it is necessary to make the sub-
division fine enough to capture the curvatures of the initial ain final
states with acceptable error. Mre curvature requires more elements,
Other modeling assumptions relat.e to material variations and lumped body
approximations. Nodes must be located where materials change (only one
maaterial per element.) and where bodies are to be lumped. Nodes also
must be placed where limit conditions or other restraint/constraint con-
ditiomis may be specified. Liberal use of nodes and elements has various
economic impacts and good modeling practice leads to rational compromises
b~et.ween economics and accuracy.

Proper modeling procedures requires some special understanding of
the loading environment. and the possible boundary conditions. It is
necessary to separate loading conditions into categories. Three categories
dealt with in SEAI)YN are

DEAD - Loads inherent with the structure (weight, buoyancy)
which have virtually no temporal variation. They must
he supported along with all and any other loads.

LIVE - Loads which are temporary in nature but applied slowly
enough to be assumed static. Current and wind loads
carn be placed in thi!; category. Various operational
working loads are ot this type.
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'rransient - L.oads which excite o0 prod(uce acceleration effects
leading to movement in a time scale short enough to
preclude static approximations. Generally this will.
mean oscillatory responses in which mass related forces
are not negligible.

SEADYN assumes all Lhree of these conditions will. be encountered
and since geometric nonlinearities are involved. the behavior in one
condition is likely to be dependent, onl the sLate induced by other conditions.
A typical situation is one in which dynamic responses are highly sensitive
to the static state produced by a combination of gravity/boundary loads
and current loading with negligible time variations but significant
space variations. It is not appropriate to attempt dynamic analysis in
this case until the static solution is found. The structure of SEADYN
presumes a staged or sequenced analysis process which applies new loading
condit.i,,ns t.o the state obtained in the preceeding stage. Full account
is given for the geometric and property changes in this staging. A
typical. analysis sequence would be to compute the equilibrium state for
DEAL) loads, apply the LIVE loads and finally induce the transient. loads
on the combined static state.

The primary variables in the computations are the nodal displace-
ments and nodal velocities. Secondary information such as strains and
Lensions are comi uted from the primary dat a. Interpretation of results
should always be iempered with kill understanding of tihe approximations
and methods used. Since the straight el o1metlts presumllet linear functions
for displacements between the nodes only a const-ait value for element
strain (call be obtained. The consequence of this is a single value for
the element tension.

Care is needed in specifying initial data for highly flexible
strtictures with low preload. Such problems suffer from a tendency to
radically change shape whitn smtlall Variations are made in element leagths,
initial node positions or element tensions. One often encounters great.
difficulty in obtaining numerically stable initial coilfigurations for
dead loading. More is said of this in later sections and the various

4.2 Sh11 oili Syst ems

,The basic components required in modeling mooring systems for
surn*tfac' ships are:

a. surface ship

b. mooring lines (usually submerged)

c. mooring buoys

d. hawser (usually in air and subjected to wind loads)

Ve. floats, sinkers and anchors
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Fach of these components have Leen dealt wiLh to some extent in the
previous discussion. Unfortunately it is not possible to develop a
fully general nonlinear analysis of ship's mooring dynamics. The primary
reason for this is the highly complex nature of the interaction between
the sea and surface bodies such as ships and moorin8 buoys. The equations
"presented for these bodies are linearized equations which address only
the response to harmonic, long-crested waves,

The theoretical approach used in dealing with mooring systems
follows through a series of approximations. The first sLep is to obtain
a description of the mooring system in the quiescent state where only
gravity loads are involved. This is called a dead load analysis. There
-are some_ pitfalls in this step which are related to the geometric nonlin-
earity of the problem. One (loes not usually know, a priori, what the
dlead load configuration of the system is and the terms in the static
equations are configuration dependent. This is the so-called initial
configuration problem and it is dealt with in some detail in References I
and 7, Section 4.8 also discusses tile problem.

The active loads on the mooring -rystem are assutmed to be winds,
surface and subsurface currents and surface waves. The effect of surface
waves is primarily a dynamic phenomenon while the static or steady-state
effects of winds and currents predominate. Therefore, it is assumed
that the active loads on the syster ;'a be separated into a Static
el iect., which is primarily due to winds and currents, and a dynamic
effect from surface waves.

The next step in the analysis is then a static analysis to obtain
the response Lo winds and currents. This is referred to ;4!; a live 1-Ad
analysis and it may include point loads representative of imposed work
loads. Nonlinearitiesi in the system also play an important part in a
live load analysis, the geometric nonlinearity is still present. A
signifi.cant uew nonilinezrity (owes from the noncouservative, position
dependent loads. The flow induced loads are strongly dependent on the
orientation of the various elements and the loa is change direction and
magnitude As the system changes shape and position.

Material nonlinearities also play an important part at this stage.
The most pronounced effect ctomes from tie fact that the lines cannot.
'lIppo 't colmypr-essive loads. Should the impoaed loads cause any of the
legs to go slack (ustuailly in taut moors with neutrally buoyant lines),
the material stiftness goes to zero and the g'oup of elements involved
with the leg are part of an unstable structure and the stiffness matrix

• I)(.• bcomes S i ngulari1.

An important, feature in slack moors (negatively buoyant legs) is
thei'- ability to resi st loads by changing shape and by lifting line or
laying it down at. the bottom. Modeling this interaction wit-h the bottom
using reasonably long cable elements produces some approximations that
must he kept. in mind while interpreting the result.s. An alternative is
to use the bottom liinited catenary elemlent. This element.a ilso inltr'oduces
.a)iproximit LGnis that must be considered,
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In certain situations it is not possible (or feasible) to obLain a
dead load configuration and then proceed to the live load analysis.
Direct solution for the combined dead and live loads is usually required
in these cases. One example is the solution for a single point moor.
In this case the quiescent state is of little value and solution for the
combined effects is usually quite easy to obtain if one has a good esti-
mate of the total horizontal load to be supported by the moor. Another
situation where this procedure may be required is in dealing with taut
moors where legs go slack. In this case the slack legs could be ignored
(not included in the model) and the dead load included in the live load
analysis.

The analysis of wave induced dynamics begins with the static configu-
ration developed by the wind and currents. Of necessity this is a fre-
quency domairn analysis. The equations presented for the ship and mooring
buoy dynamics were obtained by assuming the excitation was from a harmonic
wave. The linearization process renders the equations frequency dependent
and limited to small motion amplitudes.

The harmonic loading input assumes a reference point which is the
defining node for the ship. Phase angles on the loading are induced in
the loading which are dependent on the harmonic wave length and the dis-
tance of the load point from the reference point. Response phase angles
represent shifts from loading applied at the reference point.

The dynamic tension response in each element is obtained by adding
the displacement increments to the nodal positions recalculating the
element tensions from the constitutive relations, using the new lengths,
and subtracting the tensions in the static reference state.

Wave loading produces mean and very low frequency forces which may
have significant magnitudes on moored vessels. These depend on the
responses and orientation of the vessel relative to the wave. These
wave induced drift forces lead to slowly varying loads on the system
which lead to shifts in the "static" reference position. The treatment
of these forces requires at least two passes through the frequency
domain solution. After the first, the magnitudes of the drift forces
are estimated. Since these are predominately static loads, the static
analysis should be repeated with the additional loading. If this results
in significant movement, the frequency domain solution should be repeated
on the new reference state.

4.3 Statics

Various load incrementing options are provided with the static
analyses. In general, the gravity load will be increased in increments
in a dead load analysis. Fluid induced loads are increased in increments
during live load analyses. Both analyses allow point loads which are
incremented from zero to the specified value, held constant, or reduced
from the value to zero. It is usually assumed that gravity loads are
held fixed during a live load analysis, but an option is provided which
allows gravity load to be incremented during a live load analysis.
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When ships are used in a static analysis the ship is constrained to
remain on the surface. This normally means the ship is fixed in heave,
roll and pitch. It is possible to input stiffness terms to allow small
heave and angular motions out of the surface plane. No checks are made
on the magnitude of those responses, so the user is warned to evaluate
the validity of his results when these stiffnesses are used.

4.4 Dynamics, Time Vs. Fequecy Domain

SEADYN provides computation options for dynamics in the time and
frequency formats. Transient dynamic analysis in the time domain presumes
all of the nonlinearities are active. It is further assumed that only
the line elements provide equations for the elastic strain energy.
Kinetic energy terms (mass related terms) are obtained from the lines
and lumped bodies. Dissipative terms come from material damping and the
drag loading. No equations are available within SEADYN for the rigid
bodies. These typically require major computations using fluid/solid
interaction equations which are beyond the scope of SEADYN.

A time domain solution is called for whenever the problem imposes
motions/loads which result in large movements, load variations producing
nonlinear material effects, compression of flexible lines (slack),
and/or modifications of limit conditions. The time domain form is the
only one capable of dealing with those nonlinearities. The restrictions
mentioned above on rigid bodies eliminate a very important area of
computation from transient analysis in SEADYN. On the positive side,
SEADYN provides a significant capability for analysis of difficult
dynamic problems: anchor deployment; array placement, adjustment and
response; towing of lines and bodies in irregular paths; mooring leg
response when attachment point motion is known, etc.

The frequency domain solution is a quasi-linear approach aimed
directly at the moored ship/platform/buoy problem discussed in Section 4.2.
It is applicable when the assumptions of DEAD, LIVE and wave loading are
appropriate. It is significant in that it provides the ability to treat
coupled responses between the mooring lines and the moored rigid bodies.
Highly restricted models for spherical mooring buoys are built into
SEADYN, but the body equations and loading functions must be provided
externally for ship/platform components.

The time domain and frequency domain forms can be used in tandem to
investigate mooring leg dynamics. The approach would be to follow the
combined mooring solution tLrough the frequency response toi define the
motion at the mooring line attachment. This motion is then converted to
a time sequenced description which is used to drive the top of a stati-
cally preloaded mooring leg. This produces a more realistic definition
of the vessel motion and then allows assessment of the mooring leg non-
linearities.
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4 5 Natural Frequencies and Node Shapes

SEADYN includes the option for computing natural frequencies and
mode shapes simply for informational purposes. It provides data to no
other option within SEADYN when the global structure is investigated.
The computation of strumming induced drag amplification uses this option
to get. strum string mode shapes on subsets of the structure.

The computations for the global structure take the lumped (diagonal)
mass matrix without correction for the lack of tangential added mass
along with the tangent stiffness matrix for cvrrently defined state.
The tangential added mass correction is not taken since it leads to a
non-diagonal mass matrix, and that requires additional storage. Co,.puter
storage is a serious issue on this option since the Jacobi method is
used. The Jacobi method works entirely in core and requires the storage
of a full nxxn matrix.

4.6 Surface and Bottom Constraints

The foregoing discussion introduces the problem of constraining the
model of the system to responses which lie between the natural boundaries
imposed by the water surface and the bottom. One does not expect buoys
or lines to rise out of the water, or lines and anchors to go below the
bottom. The SEADYN program absumes the surface and bottom are flat and
parallel. Checks are made at each step of static and time domain analyses
I to see if nodes of the system are within the imposed limits. To avoid
the costly operation of checking all nodes in the system at every step,
checking is only done on points where special limit conditions are
specifieJ. When one of the critical nodes is within a certain tolerance
distance of the surface or bottom, it is constrained. For buoys or
floats, this means that the node is held fixed in the vertical direction
but free in the lateral directions. All three components, or only the
vertical, may be fixed for anchors. Whenever the vertical resultant of
all of the element tensions connecting to the point exceeds the sum of
the external vertical loads at that point, then the constraint is released.

The external loads are assumed to include the distributed loads from the
elements and the weight or buoyant firce from the lumped body.

When a solution step allows a critical node to move past the limit.
position, an overshoot procedure is activated. On incremental solutions
this consists of a step division in which the portion of the original
step which will satisfy the limit and the remainder of the step is done
with the limit restraint imposed. The iterative solution imposes the
limit by moving the over-shooting component to the limit state, setting
flags to prevent immediate release of the constraint, and a continuation
of the iteration.

4.7 Line Payout and Reel-in

The treatment of line payout and reel-in presents a host of problems
not normally encountered in structural dynamics. The major problem is
that the mass and elastic properties change with time. Not only does
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this produce direct changes in the structure, there are more subtle
changes such as time step stability characteristics. For example,
during reel-in an element may become sufficiently short to require
reduction of the time step to obtain convergence. Other problems relat-
ing to geometry effects will be pointed out as this discussion proceeds.

The approach taken in SEADYN for payout/reel-in is based on incre-
mentally changing an element's unstretched length. Since the load
carried by an element is computed from element strain and element strain
is a function of the ratio of stretched and unstretched lengths, the
equilbrium state is unfluenced by this length change. It is also necessary
to adjust the mass assigned to the nodes bounding the element. Except
for some procedural bookkeeping details the process is quite simple.
First, it is assumed the payout/reel-in occurs only at points where the
motion iL; defined. It may be fixed or given specific movements. Second,
the incremental change in element length is computed from the time step
an.i the average payout velocity over that time. The node where the pay-
out occurs is assigned that velocity acting in the instantaneous direction
of the element. If the payout point is a moved point, the velocity of
movement is added to the point. Mass adjustments are then made to the
nodes bounding the element and the equilibrium iterations are pursued.
At each stage of the iteration the velocity components at the payout
point are recalculated to reflect line re-orientation.

One of the bookkeeping problems arises when payout accumulates
large amounts .f length in the element, or reel-in removes a major portion
of the element. In either case, a process is initiated which modifies
the numoer of elements and nodes in the system. During payout the modi-
fication involves a subdivision of the element and the addition of a new
node. The process is called mitosis for obvious reasons. The subdivision
uses linear interpolation to locate the new node a preselected distance
from the payout point. That new nodal point is given the name (number)
of the payout node and a new name (number) is assigned to the payout
point to preserve the connectivity specifications. The subdivided
element then has a part which no longer grows arid a part which continues
to grow.

The reverse process is still called mitosis even though that is a
misnomer. In the reel-in process the element which shrinks to a specified
length is removed from the system by adding its length and mass to the
next element down the line and assigning the interfacing node to the
reel-in point. The element thus removed is rendered inactive by giving
it a zero unstretched length. The node removed is assigned a fixed
status to avoid solution algorithm problems.

A further bookkeeping problem is encountered in mitosis when the
next element to be added or the one to be removed is not of the same
material as the one further down the line. This multi-material payout
problem is dealt with by an approximation as outlined below. Consider
a payout end with nodes and elements are inactive and awaiting payout
as represented in Figure 4-1.
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payout point (node)
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Material 1

theoretical
interface/ /

material I

Figure 4-1. Multi-material Payout Configuration

At the beginning cf the payout sequence the active payout element is
entirely composed of material 1. The new length added to that element
is material 2 since the next element to be made active is defined to be
of material 2. Note that the reserved nodes are actually given the same
coordinates with fixed conditions on all components and the elements
connected to them are assigned an unstretched length of zero.

As the new length is added to the active element, two lengths are
maintained for the element. The first is the length at the beginning of
the sequence (i.e., the length of material 1) and the total length added
(i.e., the length of material 2). Since there is no node at the theoreti-
cal interface the active element is treated as a composite element. The
composite EA and effective tension are calculated as follows:

1. Use current nodal positions to calculate element stretch, AL.

2. Apportion AL: to ALI, and AL based on EA1 and EA from the
2 . 2preceeding time step or iteration.

3. Calculate T1 , T2 , EA1, EA , from material properties usiing the
new sub-lengths to calculate the strains.

4. Compare T to T2 and repeat steps 2 and 3 until T is sufficiently
close to +2 2

The formulas uzed to apportion AL to materials I and 2 are based on the
small strain assumption as follo:,,•:

Given:

0 0 t t
OLI, L2 , L1 + L2 , T, EAV, EA2
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Find:

t t

0  1 1 0 r2 1 AL ,I I All2

Known:

T I '1T = tT

t AL tL
0 L 0L small strain approximation

AE
L

Hence:

AE
01 41 tl 1

0 0 22'

02

01

tT I1 (t, T. 0OL) 0 OT, 4-2

"'1 ~ LI O2
.+

AEI AE2

0
L1

A A 0

1 2

The same equations are used in ree.-i-n. The reel-in mitosis will assign
the length of the rcmoved element (material 2) to the next element down
t.he line (material 1) by a Al. equal to the length involved. The continued
reel-in will then remove lengths of material 2 until the theoretical
interface point is reached.

Yet another complication is encountered when lumped bodies are
assigned to the nodes involved in payout/reel-in. When a lumped body is
assigned to the payout node the theoretical interface is again employed.
This is so even if no material change is indicated. Mass is then shifted
from the payout point to the first. active node as line is paid out.
When payout mitosis occurs the mass is reassigned back to the payout
node as it is moved out to the new active position. The reverse of this
process is employed with reel-in of lumped bodies. The mass redistribution
formulas are:
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1/20 ML1 ++ 2 M 4-4, H1~~ "--M P2 + 1/2-6----M H +-OLBN

L L L 0

N0 + 1/2 2 2 + 1/2- LM +l 6 MB 4-5

M2A: (2 0 L + AL') 0 L- 0 L 2]2 MAL 0L 12
m [(2 21 4-6

1 2 OL (0 L + AL) 2 L (0 L 0 AL)2-

AL 0L1

+ 1 O +Al)MB
~01 (01. + AL)

Al0  W, (2 0 + AL) 0L (2 0O, + 0 L ) () 4-7
L (L + AL)

0M2- L 20 L 1
+2 0L (0L + AL) AL 5  (0L + AL) B

whe re

I refers to the first active node

o relers to the payout node-

P1 L I N
HI OL

,4 2 -- 2 M2

I :z mass per unit of unstretched length, material I

2 mass per unit of unstret.ched length, material 2

SBN mass of lumped body

A similar procedure is used to adjust the gravity loads.

The drag loads are apportioned as follows
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L.

FO = i 4-9

Where F. represents the components of the body dragload.

Finally, another bookkeeping feature has been found to be necessary
when starting a payout sequence. Mitosis is defined to occur when the
unstretched length of an element exceeds a user defined mitosis length
plus a reference length. The reference length is the unstretched length
of the element at its payout initiation or the mitosis length. The
initial length is taken in those cases where there is multimaterials
involved or where no previous mitosis has occurred on the line (i.e., at
payout startup). The reference length is taken to be the mitosis length
in all other situations. This multiple choice reference length is
needed to avoid premature mitosis when starting with a long element, and
to retain a consistent definition of the theoretical interface on multi-
material payout.

4.8 Iriafapification Due to Line Strumming

A problem of considerable importance in the analysis of underwater
cable structures is the estimation of the forces induced by interactions
of the structure with the moving fluid. The assumptions and drag models
presented earlier neglected an important but ill-defined phenomenon.
When the cable cross section is approximately round or when cable fairing
has negligible torsional resistance, the steady-state value of the lift
force is negligible. The foregoing developments have neglected this
force. flowever, under appropriate combinations of flow conditions and
cable size, a significant oscillating lift force can be pioduced by
vortex shedding. If the frequency of this oscillatory lift force is
sufficiently close to the frequency of a structural vibration mode, then
significa-it structaral motions are possible. Just how much motion
results is a very difficult thing to predict.

There are many factors unfluencing the structural response of
flexible systems to vortex shedding. Not all of them are understood.
Undoubtedly such things as structural stiffness and orientation (both
local and global), the proximity of abrupt changes in structural features,
the coherence of vortex shedding, and the interaction between vortex
formation and structure movement play some role in determining the
response. A comprehensive theory which permits complete analysis is not
yet available. Rather than wait for the advent of a complete theory
(and in true engineering tradition), the analyst of cable structures
introduces an approximation.

In many situations it is noticed that vortex shedding results in
relatively small amplitude local responses. Rather than inducing direct

changes in global structural response, the cable strumming action has
indirect effects which are approximated quite well as an apparent increase
in cable profile. This is in effect an increase in the normal drag co-
efficient. Capitalizing on these observations, Skop, Griffin and Ramberg
161 of NRL, formulated an approach to computing these drag amplifications.
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Briefly stated, the NRL approach presumes a given segment of cable
which is a candidate for strumning will strum when the vortex shedding
frequency is in proximity of onetgf the cable natural frequencies.
Specificailly, strutwaing in the it cable mode is assumed to occur when

Wn • w < 4-10
n S n1+1

where

Ln' Wnti are two adjacent structural natural frequencies.

w is the vortex shedding frequency.

This presumes that the natural frequencies are closely spaced and
tha no overlapping in responses occurs. When w is below the lowest

.S
natural frequency, it is assumed that no strumming occurs. The same
assumption is made when w significantly exceeds the highest natural
frequency. s

Once the critical mode is identified a modal scaling factor is
computed by

Lf0 4n ds
I fo ~n ds4-11

fL 4n2 ds
n 0 n _2•

th
where in (s) represents the it mode shape.

The response amplitude along the string is estimated by

Y (s)max = A a -x 2 hn(s)I 4-12/2
d MIX kons)41

The value, A , is a dimensionless modal response parameter obtained
max

from a least squares curve fit of experimental data relaLing it to a
struan•ing response parameter, S

A 1.29/(1 + 0.43 S " 4-13
max

'The parameter, S., is a function of the effective damping and the Vibra-
tory Reynolds number. The latter is written

w d
R n 4-14

Where v is the kinematic viscosity of the fluid and d is the effective
cable diameter. The strumming response parameter is given by
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2
SG - 2 S K 4-1

where S is the Strouhal number, 0.21, and

K 22.2/RnI/2 4-16

The value of K reflects the neglect of internal cable damping and the
assumption that the fluid damping coefficient per unit cable length is

Cf 4.5 n p 1/2 4-17

where p is the fluid density,

The strumming response estimate of Equation (4-16) is then used to
calculate a wake response parameter as follows

W = (+ 2 Y d (W/w) 4-g

Another curve fitting of experimental data leads to the following expression
for the drag coefficient amplification

CD(s)/C 1.0 for W < 1.0
D~ Dor

= 1.0 4 1.16 (W - 1.0)0.65 for W 21 1.0 4-19r r

The integrated effect of the local drag amplification is then estimated
by

C)v /CDo IL fo CD(S)/C°) ds 4-20

The procedure requires the following steps:

1. Identify a specific section of cable which is a candidate for
strumming.

2. Develop an approximate local model for the cable and select. a
representative local fluid velocity.

3. Calculate w
s

w 2 Sv/d ISin (0-0)1 4-21
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whe re- 1
v magnitude of local fluid velocity

0 = velocity heading
v

O = representative cable heading

4. Calculate natural frequencies and mode shapes for the cable F.I
span.

5. Select critical mode.

6. If one is found, calculate drag amplification factor using
Equations (4-li) through (4-20).

7. Assign this drag amplification to all elements of the string.

This procedure is repeated each time it is determined that signifi-
cant changes have occurred in the flow or structural characteristics.

4.9 The Initial Confjguration Problem

One of the frustrating features of cable analysis is that most
cable systems do not have rigidit, or spatial stability unless preloads
are imposed. The systems are usually so flexible that small changes in
preloads cause lakige shape changes. Noting that all of the static solu-
tion methods use a stiffness matrix, one is faced with a problem of
getting a realistic estimate of the stiffness matrix which is nonsingular.
In many situations it is necessary to have very accurate estimates of

ithe initial configuration before any of the solution methods will work.

Various facets of this problem are explored in Reference I and 7.
Some procedures which may help obtiain stable starting configurations are
discussed in the User's Manual.

A technique that has proven of some use in overcoming ill-conditioning
31Cand even singularities when using the MNR solution is the use of numerical
damping. Felippa 1211 shows that nonsingular adjustment t.o the estimator
matrix, (K] can be generated by adding a matrix of the form

p B Ill 4-22

where

B - {R} TK] IR1/(R} T{R) 4-23

and p in a user specified numerical damping coefficient. This additional
term tends to "stiffen" the estimator matrix and increase the chances
for convergence.
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The program also provides for numerical damping to be used wit~h the
ihc .znielkl al Solut Iona,, lThis leature should he used with extreme care
since it. alters the equations of equilibrium. If an appropriate value
can bQ selected, it would be possible to compensate for some of the
error in the first incremental step. There is no rational way available
to estimate how much damping to uso in this case.

The program provides a quick aid convenient way of getting starting
configurations when negatively buoyant lines are used. If a line between
two defined points is a catenary which reaches the bottom with a horizontal
tangent somewhere between the two points, then nodes can be generated
along that line. The well known catenary equations are used and one or
more of the generated nodes are assumed to be on the bottom if the lower
defining node is not. at the tangent point. The element. preloads for the
line are also generated and can be assigned to the line elements.

4.10 CoRmponent Adequacy Check

The SEADYN program provides a unique feature of checking the capacity
of the various components of the system against imposed loads. The three
types of checks provided are:

1. Anchors - the loads imposed on the anchor or fixed node are
sunmmed and the resultant is compared with the anchor holding
power.

2. buoys - the resultant of the loads in the lines connecting to
the buoy is checked against the buoy capacity.

3. Lines - individual cable elements are chec:ked to see if they
are loaded beyond their capacities.

The component checks for buoys and anchors follow the procedures outlined
in NAVFAC DM-26 and discussed in Reference 22. The component capacities
cain be input or obtained from the invenitory tables developed for the
DESMOOR program 1221. The inventories are described in Appendix D of
the tUser's Manual.

All of th ., adequacy checks rely on estimates of the loads at the
cud of an element. The one dimensional simplex element has only one
valule of tension associated with it regardless of how long it is, what
its weight is, and/or how much distributed load it is supporting. The
tension associated with the element can be thought of as being at the
midpoint of the element. The procedure for modeling distributed loads
must be recalled to see how to estimate element end loads. Equations
(3-26) and (3-43) both show that the nodal point equivalent loads for
distributed loads are estimated using the element shape functions.
These end loads represent the loads applied to the end nodes by the

element as it supported distributed loads. 'The total load at each end
of the element is then the vector sum of the element tension and the
element loads. The direction of the resultant load at each end gives an
estimate of the direction the cable lies at that point. In symbolic
form the total Loads applied to the nodes by the element. are
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Some ambiguity in the loads applied to anchors results when long elements
are used next to the anchor. If the line actually contacts the bottombefore thle anchor connection (i.e., between the two nodes which define

the element), the SEADYN Program will not detect this in the solution.
When a l ine check is made the resultant of the forces at the anchors
will have a component pulling down indicating the line was hanging below
the anchor. This is due to the model not being able to sense the bottom
contact and transfer the weight at that point. Detailed and accurate
modeling of the line interaction with the bottom requires short. elements

in that regiohl. Fortunately the lack of modeling detail at the bottom
of the line has little influence on the response at the top of the line.
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5.0 SOLUTION METHODS

5.1 Static Solutions

The SEADYN program offers four basic solution methods for static
analyses. The various features of each of them are discussed at length

in References I and 7 so only a brief-description will be given here.

The first method is a .;equence of linear increments (SLI method).
The loads are divided into a sequence of increments and the basic incre-
mental Equation (3-12) is repeatedly applied. The SLI method requires
the regeneration of the incremental stiffness matrix at each step to
reflect the changes in position and constitutive relations. It has the
undesirable feature of drifting from the correct solution through accumu-
lating errors and small increments are required for accuracy.

The second method works with the incremental EquaLion (3-13). The
first step is identical to the SLI first step, but on each succeeding
step the force residual from the previous step is fed back as a corrector.
For this reason it is called the residual feedback method (RFB). Although
it is a non-iterative method it tends to be self-correcting. On responses
which are reasonably well behaved (particularly monotonic responses) the
RFB method gives accurate results with significantly fewer steps than
does the SLI method. The RFB method costs somewhat more per step because

of the residual calculation. The recalculation of the incremental
stiffness matrix is still required at each step.

A more general method which employs iterations to solve Equation (3-11)
is known as the modified Newton-Raphson method (KNR). It begins with an

estimated configuration and uses an estimate of the tangent stiffness

matrix to obtain successive displacement increments which hopefully lead

to a zero force residual. Being an iterative method it is by far the

most accurate of the three methods. This accuracy is not free, however.

In the first place the method is not unconditionally convergent and the

size of the load step required to assure convergence is not easily

determined. In some cases it may be extremely small. In ill-conditioned

systems it may not be possible to get convergence without some special

auxiliary procedures.

The general form of the MNR method is

) {Aq}(i+) = {R}(i) 5-1

{qi) (q)}() + {&q)(i+i)

where the superscript i refers to the iteration step. The [K] matrix is

referred to as an estimator matrix. If JR] ic the incremental matrix

K T1, and it is recalculated at each iteration, the usual Newton-Raphson

procedure is obtained. If [K] is an approximation of [KT] and/or it is

not recalculated at each iteration one has a modified Newton-Raphson

method. When [K) is not changed and the response curve is monotonically
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increasing function the successive estimates will usually oscillate
about the correct solution. If the step size is small enough the estimates
will tend towards the solution (converge). If the step size is too
large the estimates will diverge.

Once oscillating estimates are detected, various accelerating pro-
cedures can be employed, and in some instances they will work even when
the oscillations are divergent. The program detects oscillations by
monitoring the degree of freedom yith the largest initial response
(i.e., largest component of (Aq} '. Oscillation is signalled by repeated
sign changes of the critical fAq) component. The simplest acceleration
scheme averages the two alternating estimates using the sizes of the
critical components to weight the average. An optional procedure uses a
one-dimensional search to seek a close estimate of [Aq) which crosses
the correct solution. This search is initiated when the ith~iteration
signals a large oscillation. The search beginstft the (i-i)n position
and takes small steps in the direction of the i increm-- t. A new step
is tried at each position until the new increment reverses direction.
At this point the last two positions are averaged to get a new starting
estimate for the iteration. The size of the step used in this I-D
snrch is controlled by input. The input factor is the fraction of the
i step which is taken as the first step of the search.

Various options are provided to measure convergence of the itera-
tions. Reference I should be consulted for discussions of the convergence
criteria. The options are listed in Sections 7.1.14 of the User's Manual.

The fourth solution method is called a viscous relaxation method.
It is similar in •'-y respects to the damped Newton-Raphson method. The
major distinction is that the equations are cast into a transient dynamic
format where a pseudo-time is used to control load steps and iterations.
A pseudo-velocity vector is used in conjunction with the residual vector
to make modifications in tne damping and/or time steps. This allows the
solution to be adapted to the character of the response. As damping
becomes negligible, the method becomes the Newton-Raphson method. Details
of the derivation are giver in Reference 7. The solution form is

(- i]=tKI Aq) = A ff - f~q) 5-2

oa RI 1  R

+ (3 t) tic) t6)ti-At

Approximating t+AtIff at the geometric positions of t linearizes the
method. It is applied the same way as the RFB method except that the
time step, At, and the damping matrix are adjusted based on the process
of the solution. The response data for the step are computed from

t qAt[q) = tfq) + At tfq) + oat -t÷ cil - tfq) 5-3
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t ~ +At {t +At-a

- ~- - -, 5q-4

The damping matrix is computed from

t tCj] (diagonal) 5-5Ric = R i-

tc = t + ) 5-6
Ri 1

where

tt is a modifiable damping parameter

C. is a response dependent term

K is a representative stiffness

The value of K is taken to be the average extensional stiffness (AE/L)
or Equation (4-23). The C. term is included for special problems associated
with the angular responses of rigid bodies.

The patteIn of velocity changes and the residual norm are used to
adjust At and C in controlling the performance of the algorithm.

The form using Equation (5-2) is referred to as thet methoe. A
form which avoids the residual calculation by replacing {f) - (gJ
by IAf} is referred to as the VRS method. Its performance is inferior
to the VRR method.

5.2 Time Domain Dynamic Solutions

The SEADYN program provides for four different time domain solution
methods. Each of them utilize the following set of forward difference
equations to develop the solutions:

t÷At(q) = t(q) + At t[q) + At2 t{q) + a At (t+At{t} . t} 5-

2

Sq))

2 (At{} . t+1 q
tqj q,) + At Jq*J + Tht ( q) - Iq*))

where At is the time step and a, P, and T are integration parameters.
The usual Newmark formulas are obtained with a = 0.
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When Equations (5-7) are augmented with a motion equation for the
system, one has three simultaneous differentialt.gmations with the nodal
displacements, velocities and accelerations at C as unknowns.
Specific forms of the solution routines for this set of equations are
developed in Reference 1. Only the final forms will be presented here.

Direct Iteration Method (DIM)

This method uses Equations (5-7), (3-8), and (3-46) to obtain an
iterative formulation. The form is

St+Atq (n+l) t+At (h) ) 2 t+At {}n+l)
{q} Eq) + (OaTi] At~ A( {q ) 5-8

t+At;.q (n1+) 1 t+Atlll(n) + TAt A( t÷At JAq)(n~l))
- I t...

+t{ ((n+2) t+al (n+l);q~tfl
1

*l) +}fl +M 'rtR It o

t+At (n+l) t+Atq(n~l)
- IM NOL1

The iteration can be started with Equations (5-7) with ui T = 0 or
with the residual feedback solution to be described below. The DIM
method has been shown to be an accurate and cost effect approach. Since
it Is an iterative method which retains all of the nonlinear terms it
readily deals with all, of the important nonlinear effects such as position
deps-dent loads, constraints, slack segments, and changing geometry.
Of particutar irterest is the ease with which problems with defined
motion arv dealt with. When problems require the imposition of a known
motion (e.g., cabie towing problems) the moved node is simply held at
the required dynamic state during the iterations.

Sequence of Linear Increments (SLI)

This method starts from Equations (5-7) and uses the incremental
form (3-9). An iterative solution is also employed, but it has been

, shown, that this method costs essentially the same as the DI method and
1j,, much less accurate 111. It, too, is capable of solving the moving

bobounda ry proble )n but an .augmentzd global stiffness ma'.rix involving the
moved degrees of freedom is required. This increases the storage require-
ments, reduces the speed and increases the numerical error potential.

Residhual Feedback Method (RYE)

Equations (5-7) are inverted and substituted into the incremental
form (3-10). The result is

* , i f f 5-9
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whe re -

~eff1  = +)t "--.- fM(t'q}) 5-10

t+ft{t( q t 5-11

01-IT) t 1 I

FqWAti1ol (5- 9 ) is a ilinear al~getraic equation which can be solved by the
isu•Al manner. No iteration is required and the method has a self-correcting
feaLure simiiar to the static RFB method. This method follows more
closely the traditional Newmark implicit integration form 123]. It has
the unconditional stability features Lthat have made the method so popular.
No provision is made for solving the moving boundary and payout problems,
however. The fact that the RFB method requires the formation of a
global stiffness matrix, the evaluation of a residual, and the solution
of simu]t;neous equations reduces its cost effectiveness. This is
.sually compensated for by using larger time stei,s.

Modified Newt.on-Rahsoa.. Form (K1NR)

ii-hs is an iterative met.hod based on a procedure similar to the MNR
static solution. The form is

t ti t.{t (n+I3 t4.A{R, t+At[m]tn) t+At," (n) S512

t +At (n+) . t.+Atl (n) A(t-+At (n]+l)

t(n11+ ) t +i-t (• ( ) T L. t-... (n+l)

04 1t (L +LA) )t4at{ +}
("(YTf I$)

Thu iteration is started with,

Aq}) = . t , 5-13

t+At{, (0) T .at, tAt (.V+f,"l (•v,• (71

n•. t'

2 0-

- ----M



tiqt(O) +At t+At (0) 1 t

atAt (W+0)

(1+2a) t

t+At .(0)

where t Aq) is obtained from an RFB solution. As an alternative
to Equations (5-13) the iterations can be started from Equations (5-7)
with a = 0 = T = 0.

The accuracy of this method has been demonstrated but its cost per
time step does not appeir competitive with the DI method [1). Moving
boundary and payout solutions have not been implemented with this solution.

It would appear from the studies done in Reftrence I that the best
general purpose solution method of the four is the ,,I method. On some
problems the method may encounter some difficulties, Lowever. The
iterations are convergent only for step sizes of the o,-der it takes an
axial wave to traverse the shortest, stiffest element. When the imposed
forces are slowly varying the routine will attempt to increase the step
size beyond stable behavior iimits, because the motions are small in
small time steps and the iterations converge rapidly. Controls ate
provided to the user to prevent step size increases in this situation.

In some situations the RFB solution may be found very cost effective.
Generally this will be nearly linear systems, which are slowly varying.
The user is cautioned against using very large steps with the RIB method
since gross errors may result [I].

It should be noted that the diagonal form of the mass matrix, [M o,
is used in each of the above methods. The advantages in storage and 0

solution effort are obvious. It has been shown that with piopr selec-
tion of the integration parameters, the errors introduced by the lumped
mass approximation tend to compensate for those induced by the solution
algorithm to give more accurate results. Experience has shown that
S= 0, P = 1/12 and T = 1/2 is good choice of parameters. Preliminary
observation [I] indicate that a small negative value for o may be benefi-
cial in controlling amplitude attenuations. Values of T > 1/2 introduce
numerical damping of the higher frequency components while T < 1/2
introduces negative damping.

5.3 Frequency Domain Solution

5.3.1 Solutions for Regular Waves

The response amplitudes, IQ), for a given frequency are obtained by
solving the linear simultaneois algebraic equations represented by
(3-16). The coefficient matrices for mass and damping must be recalc'-lated
for each frequency since the linearization procedure leaves them dependent
on the wave frequency.
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The damping terms present some further difficulty. In addition to
being frequency dependent, the linearized viscous terms are dependent on
the amplitude of the response. The ship's roll-damping depends on the
roll angle, the buoy rotational damping depends on the rotation angle,
and the cable and lumped body damping depend on the lateral displacement
amplitudes. Thus, it is seen that the incremental equations a e not
strictly linear.

An approximation procedure is introduced to deal with this problem.
This involves iterative solutions of the Equation (3-16) for each frequency.
The first solution at a given frequency is calculated assuming a ship's
roll angle. The roll angle obtained from the solution is then used
along with the other pertinent response amplitudes to recalculate the
damping terms and obtain another solution. This procedure is repeated
until two successive estimates of ship's roll are within 1 of each
other. It i:s assumed that buoy z.nd cable damping are less importantthan ship's roll and are thus converged when the roll has converged.

The response is then dependent not only on the wave frequency, but also
on the wave amplitude. This means that it is not appropriate to assume
a unit amplitude for a given wave frequency with the intent of obtaining

a Response Amplitude Operator (RAO) for that wave. It is necessary to
have the correct wave amplitude at each frequency. Therefore, the sea
spectrum must be used in the calculation of the regular wave responses.
Once the steady state response for a given wave frequency and amplitude
is obtained, the RAO is estimated by dividing by the wave amplitude.

The program allows the mass matrix to be formed either with the
lueped or consistent form of the element mass. The lumped form is used
for the fluid added mass terms.

Provisions for internal damping effects are provided in the propor-
tional damping form. Thus

[c] = a I+ •[K,r] 5-14

where a and • are proportionally constants. The damping from fluid drag
effects on the cable elements must. be linearized before it can be used

in Equation (3-16). This linearization is described in Appendix I.
5.3.2 The Stead_-State Wave-Induced Drift Forces

if Whenever waves encounter a floating body there arises a set of
forces which tend to move the body in the direction the wave is traveling.
These forces are often neglected since they are usually small in magni-
Lude. These are the so-called second order wave-induced drift forces.
They are generally slowly varying compared to the frequency of the inci-
dent. wave; however, they have an average or steady-state component which
may be significant enough to cause an adjustment of the static position
of the ship. These forces are directionally dependent and are sensitive
to the amplitude of the ship's response to the wave. The DTNSRDC Ship's
Motion File provides a table of coefficients which can be used to estimate
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the steady-state drift forces after the ship's dynamic response is
obtained. It should be noted that these forces do not estimate the
dynamic effects, which are at a lower frequency than the incident wave.

The specific form for the drift forces is given in Appendix A of
the User's Manual in the discussion of the Ship Motion File. The result
is a set of forces for the lateral and longitudinal directions and a yaw
moment acting at the ships reference point for each wave frequency. It
is assumed that the drift forces are cumulative for the various wave
represented in a wave spectrum. Therefore, the drift forces for each of
the regular waves are accumulated. It is felt that this is a reasonable
approximation since the wave amplitude indicated by the wave spectrum is
used in response calculation.

These accumulated drift forces cin then be used as an additional

static loading to adjust the static reference state. If it is felt that
this adjustment will affect the regular wave solutions significantly,
the user can request iterations on the regular wave solutions and the
drift force adjustments to the static reference until sufficiently small
changes are found. Either the MNR, VR, or RFB solutions can be used to
adjust the static reference.

5.3.3 Solution Procedure for Random Seas

The superposi:.ion of the regular wave responses to represent the
response to random seas follows the well established methods from the
theory of random vibrations [241. The sea is assumed to be uni-directional
(long-crested) and is described in terms of a generalized spectral
energy density function having the following form:

5 e-B/W 4

S(w) = A/w5 e 5-15

Typical values for the parameters A and B are given in Section 7.3.2 of
the User's Manual.

The frequencies to be included in the set. of regular wave calculations
are determined by specifying a frequency increment, Aw, a lower bound w
and tipper bound, w . Regular wave responses are than calculated for min'

max

W t = w + +I rmin 2 W+(ilA

wg. < W
I max

At each frequency the incident wave height is determined from the sea
spectrum by the following:

h(wi) (IS ()AW) 1/2 5-16

(Note that the wave height is twice the wave amplitude.) This wave
height is then used to converge on a steady-state dynamic response using
the methods described in the previous section.
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Let H(w,) represent the response of one of the quantities (nodal
displacement'component or element tension). The response spectral
density of this quantity is then given by

Sx(w) W 1fl* S(w) 5-17
x

The mean square of the response is

E2] f iH* S (w)dw f S (w)dtu 5-18

0 0

The integral is evaluated numerically using the points obtained from
each of the regular wave solutions. Thus

N
E2] I Sx(i-)AtW 5-19

i~l

where N is the number of regular wave components used.

When the response quantities represent the dynamic excursions
relative to the static reference state, then their expected values
(i.e., their means) are zero. The magnitude of the response is then
treated as a static part plus a dynamic part. The amplitude of the dy-
namic part is assumed to follow a Rayleigh distribution with a mean-square
value which is a function of the area under the response spectrum curve.
Assuming the sea spectrum used is based on double the square of the wave
height, the mean-square of the response amplitude is the value obtained
(5-19) divided by eight. It is possible, then, to make statistical
estimates of the maximum response by making statistical estimates of the
dynamic part and adding them to the static values obtained in the updated
reference configurations.

5.4 NairlFrequiencies and Mode Shaqpcs

The incremental Equations (3-9) without damping or external forces
has the form

I[ ] {fil [Kr {j 1 -" 0 5-20

If it is assumed that simple harmonic motion occurs then

(-Wu2 IM] + gT {u) sin wt = 0 5-21

since {u} sin wt = 0 only in the trivial case of {u) 0, this requires
that

det (1K.rI -2 IM) 0 5-22
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Solutions to this equation lead to the natural frequencies and mode
shapes of the small displacement free oscillations about the configurations
used in expressing IM) and [JK." An iterative solution is used which
obtains all of the natural frequencies and mode shapes for the system.

The primary assumption made in getting the frequencies and mode
shapes is that the equations are linear and no significant damping
exists. Both of these assumptions may be violated to some extent for
underwater cable structures. The option is provided since the frequencies
and mode shapes may still be indicative of the structural behavior.

5.5 Time Sequenced Static Solutions

Often the transient response problem involving boundary movement
and/or line payout can require considerable computer resources to evaluate.
In situations where imposed velocities and/or payout rates are relatively
slow, approximate solutions can be obtained by a sequence of static
"snap shots." SEADYN has implemented an option to drive the static
solutions sequentially through boundary motion and payout conditions.
This option is called the Time Sequenced Static Solutions (TSSS). Time
is simply a parameter in this case which determines where the moving
boundary is and how long the unstretched payout elements are. Only the
iterative static solutions (JIR, VRR, VRS) are valid in this option.
The previous state is used as a starting guess for each iteratively
solved "snap shot." Time steps can be as large as the starting guess
will allow; i.e., as long as the previous state remains a reasonable
guess for the next state.
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